Part Number Hot Search : 
2N1308 BA10393F S2113 1N965B D4189 HW7D5 USBB5TRA 24330
Product Description
Full Text Search
 

To Download AN6227FHN Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 ICs for Mobile Communication
AN6227FHN
Single chip, transmission and reception IC for PDC
I Overview
The AN6227FHN is a transmission and reception IC incorporating reception sleep function for a 1.5 GHz cellular telephone.
19 A 5.20.2 5.00.1 13 (1.10) 3.00.2 4.00.1 13 19
Unit: mm
5
4.00.1 4.20.2
3.00.1
0.80 max.
* Reception sleep function built-in * Ultra mini-type 4 mm x 5 mm leadless package * Current consumption: At reception: 25 mA At transmission: 3.2 mA
2.00.2
I Features
20
12
12
24 1 R0.3 7
8
; ;
8 0.50
7
; ;;
20 24 1 0.20.1
(1.10)
B
M
3-
C
0.
I Applications
0.10 S Seating plane
0.10
SAB
0.20.1
* Cellular telephone (1.5 GHz PDC)
S
QFN024-P-0405
I Block Diagram
TXOUT GND 16 VCC1 19 18
17
15
14
Q
20
IO
IO
13
12
Q
21
IO
11
I
22 RSSI
10
RXIN
I
23
9
Lo3
VAPC/BS
24 IO
1 2 3 4 5 6 7
8
RSSIOUT
GND (MOD)
GND (RX)
LIMOUT
Lo1
Lo2
RXBS
VCC2
1
AN6227FHN
I Pin Descriptions
Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 Symbol TXLO1 GNDMOD TXLO2 RXBS GNDRX LMOUT VCCLIM RSOUT RXLOIN RXMXIN VCCMIX MXOUT Description TX local 1 input TX modulator GND TX local 2 RXBS RX GND Limiter output VCC limiter RSSI output RX local input RX mixer input Mixer VCC Mixer output Pin No. 13 14 15 16 17 18 19 20 21 22 23 24
ICs for Mobile Communication
Symbol LMDEC1 LMDEC2 LMIN GNDOUT TXOUT VCCOUT VCCMOD Q-IN Q-IN I-IN I-IN APC/BS
Description Limiter decouple 1 Limiter decouple 2 Limiter input TX output GND TX output TX output VCC TX modulator VCC Q input Q input I input I input APC/BS
I Absolute Maximum Ratings
Parameter Supply voltage Supply current Power dissipation
*2 *1
Symbol VCC ICC PD Topr Tstg
Rating 4.2 60 125 -30 to +80 -55 to +125
Unit V mA mW C C
Operating ambient temperature Storage temperature
*1
Note) *1: Except for the operating ambient temperature and storage temperature, all ratings are for Ta = 25C. *2: PD is the value at Ta = 80C without a heatsink. Use this device within the range of allowable power dissipation referring to "I Technical Data * PD Ta curves of QFN024-P-0405".
I Recommended Operating Range
Parameter Supply voltage Symbol VCC Range 2.6 to 4.0 Unit V
I Electrical Characteristics at Ta = 25C
Parameter Current consumption (transimisson) *1 Sleep current *1 Symbol ICCTX Conditions Lo1 = 178 MHz, -25 dBm Lo2 = 1 619 MHz, -18 dBm VAPC = 2.3 V No signal, VAPC/BS 0.3 V Min Typ 25 Max 33 Unit mA
ISLTX
0
10
A
2
ICs for Mobile Communication
I Electrical Characteristics at Ta = 25C (continued)
Parameter Output level 1
*1
AN6227FHN
Symbol PO1
Conditions Lo1 = 178 MHz, -25 dBm Lo2 = 1 607 MHz, -18 dBm VAPC = 2.3 V Lo1 = 178 MHz, -25 dBm Lo2 = 1 631 MHz, -18 dBm VAPC = 2.3 V Lo1 = 178 MHz, -25 dBm Lo2 = 1 619 MHz, -18 dBm VAPC = 1.0 V No signal No signal, RXBS 0.3 V VMI = 60 dB, SW1 = b (refer to "I Application Circuit Example"), Excludes the filter loss of -7 dB VMI = 105 dB, SW1 = b (refer to "I Application Circuit Example"), Excludes the filter loss of -7 dB VLI = 15 dB VLI = 80 dB, 450 kHz component VLI = 0 dB VLI = 115 dB VS (VIS) = VS(1) + 0.12 V DS = VS (VIS + 75 dB) - V(VIS) DS(1) = 5 {VS (VIS + 15 dB) - VS (VIS)} /DS DS(2) = 5 {VS (VIS + 30 dB) - VS (VIS + 15 dB)} /DS DS(3) = 5 {VS (VIS + 45 dB) - VS (VIS + 30 dB)} /DS DS(4) = 5 {VS (VIS + 60 dB) - VS (VIS + 45 dB)} /DS DS(5) = 5 {VS (VIS + 75 dB) - VS (VIS + 60 dB)} /DS
Min -16
Typ -13
Max
Unit dBm
Output level 2 *1
PO2
-16
-13
dBm
Minimum output level *1
Pmin
-50
-40
dBm
Current consumption (reception) *2 Reception sleep current Mixer conversion gain
*2 *2
ICCRX IRXSLP GMX
20
3.2 23
4.5 10 26
mA A dB
Mixer maximum output amplitude *2 Limiter voltage gain *2 Limiter maximum output amplitude *2 RSSI output voltage 1 *2 RSSI output voltage 2
*2 *3
VMX
100
106
dB
GLM VLM VS(1) VS(2) DS DS(1) DS(2) DS(3) DS(4) DS(5)
80 0.90 0 2.31 1.39 0.75 0.75 0.75 0.75 0.75
85 1.25 0.23 2.6 1.8 1 1 1 1 1
90 1.60 0.6 2.91 2.19 1.25 1.25 1.25 1.25 1.25
dB V[p-p] V V V
RSSI reference output slope
RSSI output slope variation 1 *3 RSSI output slope variation 2 *3 RSSI output slope variation 3 *3 RSSI output slope variation 4 *3 RSSI output slope variation 5 *3
Note) *1: VCC1 = 3.0 V, IQ signal amplitude: 0.18 V[p-p] (both phases), DC bias: 1.6 V, (/4 QPSK-modulated [0000] continuous wave input. Output frequency of PO1: 1 429.0025 MHz, output frequency of PO2: 1 453.0025 Hz, output frequency of Pmin: 1 441.0025 MHz. Output level is measured with a spectrum analyzer. Setting of a spectrum analyzer: SPAN = 20 kHz, RBW = 300 Hz, VBW = 30 Hz, ST = 5 s (When inputting /4 QPSK-modulated [0000] continuous wave as IQ signal, the frequency for PO1, PO2 and Pmin becomes Lo frequency plus IQ signal frequency, which leads to the above value.) Lo input level is a setting value of signal source (output impedance 50 ) described in the "I Application Circuit Example".
3
AN6227FHN
I Electrical Characteristics at Ta = 25C (continued)
ICs for Mobile Communication
Note) (continued) *2: Unless otherwise specified: VCC2 = 3.0 V, RXBS = 2.5 V to 3.0 V, SW1 = a (Refer to " Application Circuit Example"). VLO3 = 90 dB: f = 129.55 MHz, VMI: f = 130 MHz, VLI: f = 450 kHz (Input level of pin 15 is excluded the loss of the matching circuit and filter.) VMX and VLM are measured in high impedance. Lo input level is a setting value of signal source (output impedance 50 ) described in the "I Application Circuit Example". *3: VIS is the input level VL1 at which the RSSI output voltage becomes VS(1) + 0.12 V.
* Design reference data Unless otherwise specified, VCC1 = 3.0 V. Lo input level is a setting value of signal source (output impedance 50 ) described in the "I Application Circuit Example".
Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.
Parameter Carrier leak suppression (fLo2-fLo1)
*1
Symbol CL
Conditions Lo1 = 178 MHz, -25 dBm Lo2 = 1 619 MHz, -18dBm VAPC = 2.3 V Lo1 = 178 MHz, -25 dBm Lo2 = 1 619 MHz, -18 dBm VAPC = 2.3 V Lo1 = 178 MHz, -25 dBm Lo2 = 1 619 MHz, -18 dBm VAPC = 2.3 V Lo1 = 178 MHz, -25 dBm Lo2 = 1 619 MHz, -18 dBm VAPC = 2.3 V Lo1 = 178 MHz, -25 dBm Lo2 = 1 619 MHz, -18 dBm VAPC = 2.3 V Lo1 = 178 MHz, -25 dBm Lo2 = 1 619 MHz, -18 dBm VAPC = 2.3 V Lo1 = 178 MHz, -25 dBm Lo2 = 1 619 MHz, -18 dBm VAPC = 2.3 V Lo1 = 178 MHz, -25 dBm Lo2 = 1 619 MHz, -18 dBm VAPC = 1.0 V to 2.3 V Lo1 = 178 MHz, -25 dBm Lo2 = 1 619 MHz, -18 dBm VAPC = 1.0 V/1.6 V Lo1 = 178 MHz, -25 dBm Lo2 = 1 607 MHz to 1 631 MHz, -18 dBm, VAPC = 2.3 V
Min
Typ -35
Max -25
Unit dBc
Image leak suppression *1
IL
-35
-30
dBc
Proximity spurious suppression *1
DU
-70
-65
dBc
Base band distortion suppression *1
BD
-40
-30
dBc
Adjacent channel leak power 2 suppression (30 kHz detuning) * Adjacent channel leak power 2 suppression (50 kHz detuning) * Adjacent channel leak power 2 suppression (100 kHz detuning) * APC variable width *1
BL1
-45
-38
dBc
BL2
-70
-60
dBc
BL3
-65
dBc
LAPC
30
37
45
dB
APC output level control sensitivity *1 In-band output level deviation *1
SAPC
37
46
55
dB/V
P
-1.5
+1.5
dB
4
ICs for Mobile Communication
I Electrical Characteristics at Ta = 25C (continued)
AN6227FHN
* Design reference data (continued) Unless otherwise specified, VCC1 = 3.0 V. Lo input level is a setting value of signal source (output impedance 50 ) described in the "I Application Circuit Example".
Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.
Parameter Modulation precision
*3
Symbol EVM
Conditions Lo1 = 178 MHz, -25 dBm Lo2 = 1 619 MHz, -18 dBm VAPC = 2.3 V
Min
Typ 2.0
Max 3.5
Unit %[rms]
Note) *1: IQ signal amplitude: 0.18 V[p-p] (both phases), DC bias: 1.6 V, /4 QPSK-modulated [0000] continuous wave input. Measure the suppression amount for output with a spectrum analyzer. Setting of a spectrum analyzer: SPAN = 20 kHz, RBW = 300 Hz, VBW = 30 Hz, ST = 5 s *2: IQ signal amplitude: 0.18 V[p-p] (both phases), DC bias: 1.6 V, /4 QPSK-modulated [PN9] continuous wave input. To be measured by a spectrum analyzer. (By using a leak power measurement function for an adjacent channel.) Setting of a spectrum analyzer: SPAN = 250 kHz, RBW = 1 kHz, VBW = 1 kHz, ST = 2 s *3: IQ signal amplitude: 0.18 V[p-p] (both phases), DC bias: 1.6 V, /4 QPSK-modulated [PN9] continuous wave input. The output level be measured by a spectrum analyzer. (By using a modulation precision measurement function.)
I Terminal Equivalent Circuits
Pin No. 1 2 Equivalent circuit 19 1 5 pF 2 3 18 7 k 450 2 pF 10 k 2 pF 2 pF Description TXLO1: Input pin of quadrature modulator. GNDMOD: GND pin of phase shifter and modulator. Make impedance low by widening the GND pattern. TXLO2: Local input pin for up mixer. 1 k 1 k 16 3 4 I/O I
450 2 pF
I
5 pF
Regulator 200 k 200 k
Regulator
RXBS: On/off control pin for reception block. RXBS (V) 0 to 0.3 2.5 to 3 Reception block Off On
I
4
5
AN6227FHN
I Terminal Equivalent Circuits (continued)
Pin No. 5
7
ICs for Mobile Communication
Equivalent circuit
Description GNDRX: GND pin of reception system. Make impedance low by widening the GND pattern.
6
I/O
6
180 A
LMOUT: Output pin of limiter amplifier. VCCLIM: VCC pin for IF limiter amplifier RSSI.
O O
7 8
5
7
RSOUT: RSSI output pin. DC potential corresponding to input signal level of limiter amplifier is outputted.
8 23 k 5
9 RXLOIN: Local input pin for reception down mixer. 10 pF I
11 11.2 k 5 k 5 k 5 9
10
11
RXMXIN: Input pin to 1st. IF amplifier. Input impedance is 2 k.
I
11
1 k 1 k 5
10
VCCMIX: VCC pin for reception down mixer.
12
11
MXOUT: Reception down-mixer output pin.
O
12 360 A 5
6
ICs for Mobile Communication
I Terminal Equivalent Circuits (continued)
Pin No. 13, 14 Equivalent circuit Description
AN6227FHN
I/O
15
13 14 2 k 100 k
8
Pin 13: LMDEC1; Pin 14: LMDEC2: De-coupling pin for feedback of limiter amplifier. Connect an external capacitor to GND. LMIN: Limiter amplifier input pin. Input impedance is 2 k.
15
8.5 k
102 k
I
5
16 GNDOUT: GND pin for transmission up-mixer and RF output amplifier. TXOUT: RF output pin from output amplifier circuit. VCCOUT: VCC pin for transmission up-mixer and RF output amplifier. VCCMOD: VCC pin for phase shifter and quadrature modulator. 19 Q-IN: Q signal input pin. Relation between DC bias and amplitude is as follows: DC bias (V) Amplitude (V[p-p]) 1.6 0.18 Input impedance is 100 k or more. 20 Q-IN: Q signal input pin. Relation between DC bias and amplitude is as follows: DC bias (V) 1.6 Amplitude (V[p-p]) 0.18 I
18
17
O
17
18
16
19
20
I
21
21
600 200 2 k 3 pF 3 pF
200 600 3 pF 3 pF
5
Input impedance is 100 k or more.
7
AN6227FHN
I Terminal Equivalent Circuits (continued)
Pin No. 22 19 Equivalent circuit
ICs for Mobile Communication
Description I-IN: I signal input pin. Relation between DC bias and amplitude is as follows: DC bias (V) 1.6 Amplitude (V[p-p]) 0.18
I/O I
Input impedance is 100 k or more. 23 22
600 200 2 k 3 pF 3 pF 3 pF 3 pF 200 600
23
I-IN: I signal input pin. Relation between DC bias and amplitude is as follows: DC bias (V) 1.6 Amplitude (V[p-p]) 0.18
I
5
Input impedance is 100 k or more. 24
Regulator 200 k 24 10 k
3 k
APC/BC: Pin for use both as battery saving of transmission block and as power control of transmitting RF output. Control with the following conditions: VAPC (V) 0 to 0.3 1.0 to VCC Mode Off On (APC control)
I
(APC control)
Input impedance is 5 k or more.
I Technical Data
1. PD Ta curves of QFN024-P-0405 PD T a
0.700 0.660 0.600 Mounted on standard board (glass epoxy: 50 mm x 50 mm x t0.8 mm) Rth(j-a) = 151.5C/W
Power dissipation PD (W)
0.500
0.400
0.300 0.279 0.200 Independent IC without a heat shink Rth(j-a) = 357.4C/W
0.100
0.000 0 25 50 75 100 125
Ambient temperature Ta (C)
8
ICs for Mobile Communication
I Technical Data (continued)
2. Main characteristics APC control voltage characteristics
0 -10 -20 Ta = 25C Ta = -30C Ta = 80C 20.00
120 110
AN6227FHN
Mixer characteristic
PO
10.00
100
0.00 -10.00 -20.00 -30.00
Mixer output level (dBV)
90 80 70 60 50 40 30 20 10 0 -20 0 20 40 60 80 100 120 Ta = -30C, 25C, 80C
Output level PO (dBm)
-30 -40 -50 -60 -70 -80
ACP 30 kHz
-40.00 -50.00 -60.00
ACP 50 kHz
-90 -100 -110 0 1 2 3 -70.00
DU
-80.00 -90.00
Mixer input level (dBV)
APC control voltage (V)
VCC = 3.0 V, Ta = -30C, 25C, 80C Mixer in: 130 MHz Mixer out: 450 kHz Lo3 in: 129.55 MHz, 90 dBV
VCC = 3.0 V, Ta = -30C, 25C, 80C, BS = VAPC = VAR Lo1 : 178 MHz, -25 dBm Lo2 : 1 619 MHz, -18 dBm I, Q : 0.18 V[p-p] (both phases) 1.6 VDC , /4, [0000] or using PN9 stages continuous wave. Adjacent channel leak power suppression amount: ACP 30 kHz, ACP 50 kHz (dBc) Proximity spurious suppression amount: DU (dBc)
Limiter amplifier characteristics
120
RSSI characteristic
3.0
Limiter amplifier output level (dBV)
110 100 90 80 70 60 50 40 30 20 10 0 0 20 40 60
Ta = 80C Ta = -30C Ta = 25C
2.5
RSSI output power (V)
2.0
1.5
Ta = -30C, 25C, 80C
1.0
0.5
80
100
120
140
0.0
0
20
40
60
80
100
120
140
Limiter amplifier input level (dBV)
Limiter amplifier input level (dBV)
VCC = 3.0 V, Ta = -30C, 25C, 80C, BS = 2.5 V Limiter in: 450 MHz, Limiter out: 450 kHz
VCC = 3.0 V, Ta = -30C, 25C, 80C, BS = 2.5 V Limiter in: 450 MHz, Limiter out: 450 kHz
9
AN6227FHN
I Application Circuit Example
ICs for Mobile Communication
Mixer out
TXOUT
VCC1
47 2.0 k
3.3 F
100 pF 3.3 F
100 nF
450 kHz filter
100 nF a SW 1 b
1 000 pF 1 000 pF
15 nF
15 nF
19
18
17
16
15
14
Q 330 pF Q 330 pF I 330 pF I 330 pF VAPC/BS 2 200 pF
20
IO
IO
13
12 100 pF 1 000 pF
21 22 RSSI 23
IO
11 47 VMI 100 pF 9 1 000 pF Lo3
10
24 IO
8 1 000 pF
RSSIOUT
1
2
3
4
5
6
1.0 k 100 pF 10 pF 33 nF 1 000 pF 25 F
7
Vs
10
VLM LIMOUT
RXBS
VCC2
Lo1
Lo2
Request for your special attention and precautions in using the technical information and semiconductors described in this material
(1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan. (2) The technical information described in this material is limited to showing representative characteristics and applied circuit examples of the products. It does not constitute the warranting of industrial property, the granting of relative rights, or the granting of any license. (3) The products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances). Consult our sales staff in advance for information on the following applications: * Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body. * Any applications other than the standard applications intended. (4) The products and product specifications described in this material are subject to change without notice for reasons of modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements. (5) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment. Even when the products are used within the guaranteed values, redundant design is recommended, so that such equipment may not violate relevant laws or regulations because of the function of our products. (6) When using products for which dry packing is required, observe the conditions (including shelf life and after-unpacking standby time) agreed upon when specification sheets are individually exchanged. (7) No part of this material may be reprinted or reproduced by any means without written permission from our company.
Please read the following notes before using the datasheets
A. These materials are intended as a reference to assist customers with the selection of Panasonic semiconductor products best suited to their applications. Due to modification or other reasons, any information contained in this material, such as available product types, technical data, and so on, is subject to change without notice. Customers are advised to contact our semiconductor sales office and obtain the latest information before starting precise technical research and/or purchasing activities. B. Panasonic is endeavoring to continually improve the quality and reliability of these materials but there is always the possibility that further rectifications will be required in the future. Therefore, Panasonic will not assume any liability for any damages arising from any errors etc. that may appear in this material. C. These materials are solely intended for a customer's individual use. Therefore, without the prior written approval of Panasonic, any other use such as reproducing, selling, or distributing this material to a third party, via the Internet or in any other way, is prohibited.
2001 MAR


▲Up To Search▲   

 
Price & Availability of AN6227FHN

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X